答
(1)∵f(x)=ax3+bx2-a2x(a>0),
∴f'(x)=3ax2+2bx-a2(a>0)
依题意有,
∴(a>0).
解得,
∴f(x)=6x3-9x2-36x..
(2)∵f'(x)=3ax2+2bx-a2(a>0),
依题意,x1,x2是方程f'(x)=0的两个根,
且|x1|+|x2|=2,
∴(x1+x2)2-2x1x2+2|x1x2|=8.
∴(-
)2-2•(-)+2|-|=8,
∴b2=3a2(6-a)
∵b2≥0,
∴0<a≤6设p(a)=3a2(6-a),
则p′(a)=-9a2+36a.
由p'(a)>0得0<a<4,
由p'(a)<0得a>4.
即:函数p(a)在区间(0,4]上是增函数,
在区间[4,6]上是减函数,
∴当a=4时,p(a)有极大值为96,
∴p(a)在(0,6]上的最大值是96,
∴b的最大值为4.
答案解析:(1)由f(x)=ax3+bx2-a2x(a>0),知f'(x)=3ax2+2bx-a2(a>0)依题意有,由此能求出f(x).
(2)由f'(x)=3ax2+2bx-a2(a>0),知x1,x2是方程f'(x)=0的两个根,且|x1|+|x2|=2,故(x1+x2)2-2x1x2+2|x1x2|=8.由此能求出b的最大值.
考试点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;函数在某点取得极值的条件.
知识点:本题考查函数解析式的求法和实数b的最大值的求法,对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.解题时要认真审题,仔细解答,注意导数性质的灵活运用.