集合M={x|x=kπ/2+π/4,k∈Z},N={x|x=kπ/4+π/2,k∈Z}M∩N?
问题描述:
集合M={x|x=kπ/2+π/4,k∈Z},N={x|x=kπ/4+π/2,k∈Z}M∩N?
答
提取π/4,M中x=π/4(2k+1),N中x=π/4(k+2),(2k+1)为奇数,(k+2)为整数,所以M∩N=M={x|x=kπ/2+π/4,k∈Z},
答
集合M={x|x=kπ/2+π/4,k∈Z}表示的是四个象限的对角线对应的角的值,
N={x|x=kπ/4+π/2,k∈Z}表示的是四个象限轴及其对角线对应的角的值.
显然集合M被集合N包含,是集合N的子集.所以M∩N=M.