高数:如何计算sint^2cost^7的积分?S表示积分号,中括号代表积分限,那么S[0,Pi/2](sint^2*cost^7)dt=?答案是(2-1)!(7-1)!/(9-1)!,很想知道这个积分答案是怎么求出来的,(2-1)!(7-1)!/(9-1)!这里两个感叹号是什么意义,是阶乘的阶乘吗?这个答案是怎么推导出来的呢?-1/9*sin(t)*cos(t)^8+1/63*cos(t)^6*sin(t)+2/105*cos(t)^4*sin(t)+8/315*cos(t)^2*sin(t)+16/315*sin(t)
问题描述:
高数:如何计算sint^2cost^7的积分?
S表示积分号,中括号代表积分限,那么
S[0,Pi/2](sint^2*cost^7)dt=?
答案是(2-1)!(7-1)!/(9-1)!,很想知道这个积分答案是怎么求出来的,
(2-1)!(7-1)!/(9-1)!这里两个感叹号是什么意义,是阶乘的阶乘吗?这个答案是怎么推导出来的呢?-1/9*sin(t)*cos(t)^8+1/63*cos(t)^6*sin(t)+2/105*cos(t)^4*sin(t)+8/315*cos(t)^2*sin(t)+16/315*sin(t)
答