求上限3下限-3根号下9-x^2dx的定积分要有过程不要直接写结果

问题描述:

求上限3下限-3根号下9-x^2dx的定积分
要有过程不要直接写结果

三角代换,令x=3sint,dx=3costdt

积分:(-3,3)根号(9-x^2)dx
先求:积分:根号(9-x^2)dx
令x=3sint,
则dx=3costdt
x[-3,3]
t[-pi/2,pi/2]
原式
=积分:(-pi/2,pi/2)3cost*(3cost)dt
=积分:(-pi/2,pi/2)9(1+cos2t)/2dt
=9/2*t+sin2t|(-pi/2,pi/2)
=9pi/2

此定积分的几何意义就是上半圆周y=√(9-x^2)与x轴围成的半圆的面积,所以结果是1/2×π×3^3=9π/2