已知正数列{an}和{bn}满足:对任意n(n属于N*),an,bn,an+1成等差数列且an+1=根号下b已知正数列{an}和{bn}满足:对任意n(n属于N*),an,bn,a(n+1)成等差数列且a(n+1)=根号下bn x b(n+1)判断数列根号下bn为等差数列

问题描述:

已知正数列{an}和{bn}满足:对任意n(n属于N*),an,bn,an+1成等差数列且an+1=根号下b
已知正数列{an}和{bn}满足:对任意n(n属于N*),an,bn,a(n+1)成等差数列且a(n+1)=根号下bn x b(n+1)
判断数列根号下bn为等差数列

a(n+1)=根号下bn x b(n+1)
a(n)=根号下bn x b(n-1)
因为an,bn,a(n+1)成等差数列,则an+a(n+1)=2bn,
将(1),(2)两式代入,化简得到 根号下b(n-1)+根号下b(n+1)=2根号下bn所以根号下bn为等差数列

an,bn,an+1成等差数列,则有:2bn=an+a(n+1)
由题意:
a(n+1)=根号bn x b(n+1)
a(n)=根号b(n-1) x b(n)
将上两式代入:2bn=an+a(n+1) ,有
2bn=根号bn x b(n+1)+根号b(n-1) x b(n)
因为根号bn为正数,上式两端同除以根号bn,得:
2倍的根号bn=根号 b(n+1)+根号b(n-1)
由此,上式足以说明根号下bn为等差数列!