曲线y=cos(ωx+π/3)在点(π/2,y)处的切线斜率为k,若|k|曲线y=cos(ωx+π/3)在点(π/2,y)处的切线斜率为k,若|k|周期T=----------

问题描述:

曲线y=cos(ωx+π/3)在点(π/2,y)处的切线斜率为k,若|k|曲线y=cos(ωx+π/3)在点(π/2,y)处的切线斜率为k,若|k|周期T=----------

2X²-5X-4X+10=4X+12
2X²-13X=2
X²-13X/2=1
X²-13X/2+169/16=169/16+1=185/16
(X-13/4)²=(±√185/4)²
X-13/4=±√185/4
X=(13-√185)/4,X=(13+√185)/4

k=y'=-ωsin(ωx+π/3)
|k|即|ω|则后面T=π/|ω|>=π