一轮船航行于两个码头之间,逆水需10小时,顺水需6小时.已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离.
问题描述:
一轮船航行于两个码头之间,逆水需10小时,顺水需6小时.已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离.
答
设水流的速度为x千米/小时,
则顺水时的速度为12+x,逆水时的速度为12-x,
根据题意得:(12+x)×6=(12-x)×10,
解得:x=3.
(12+3)×6=90千米.
答:水流的速度为3千米/小时,两码头之间的距离为90千米.
答案解析:设水流的速度为x,由顺水速度=静水速度+水流的速度,逆水速度=静水速度-水流的速度,表示出顺水速度和逆水速度,再根据码头之间距离不变列出方程.
考试点:一元一次方程的应用.
知识点:本题考查了一元一次方程的应用,解答这道题找出轮船在两个码头往返路程相等,表示出顺水和逆水速度,用速度乘以时间得到路程便可解决.