求(2sin78°-sin18°)/(2cos78°+根号3sin18°)的值.
问题描述:
求(2sin78°-sin18°)/(2cos78°+根号3sin18°)的值.
答
(2sin78°-sin18°)/(2cos78°+根号3sin18°)
=(2sin(60°+18度)-sin18°)/[2cos(60°+18°)+根号3sin18°]
=(2sin60°cos18°+2cos60°sin18°-sin18°)/(2cos60°cos18°-2sin60°sin18°+根号3sin18°)
=(根号3cos18°+sin18°-sin18°)/(cos18°-根号3sin18°+根号3sin18°)
=根号3cos18°/cos18°
=根号3