设复数Z1,Z2满足|Z1|=|Z2|=2,|Z1+Z2|=2√3,则|Z1-Z2|等于?

问题描述:

设复数Z1,Z2满足|Z1|=|Z2|=2,|Z1+Z2|=2√3,则|Z1-Z2|等于?

设 Z1 = a + biZ2 = c + di根据题意a^2 + b^2 = 4c^2 + d^2 = 4(a+c)^2 + (b+d)^2 = (2√3)^2 = 12第三个式子 减去前面两个式子,推出2ac + 2bd = 4|Z1 -Z2|^2= (a-c)^2 + (b-d)^2 = a^2 + b^2 + c^2 + d^2 - (2ac + ...