定积分中值定理的证明中,证明在[a,b]内至少存在一点s.这里证明的时候直接用了连续函数介值定理,可是连续函数的介值定理不应该是在(a,b)内存在至少一点s吗?有点混乱.
问题描述:
定积分中值定理的证明中,证明在[a,b]内至少存在一点s.这里证明的时候直接用了连续函数介值定理,可是连续函数的介值定理不应该是在(a,b)内存在至少一点s吗?有点混乱.
答
我知道你的疑惑了,注意介值定理考虑的是不相等的两个函数值(设为A,B),对A和B之间(这里是开区间,因为考虑的是之间)的任意数都能取得,再看看它的推论,这里就是闭区间了,因为什么呢,因为这里是最大值和最小值,最大值和最小值一定能被取得(这里没说之间了,把A,B都拉进来考虑了的),再看看定积分的中值定理,这里也是最大值和最小值,所以用闭区间是没错的.