已知△ABC的内角B满足2cos2B-8cosB+5=0,又若a•b=−9,|a|=3,|b|=5.θ为a与b的夹角.求sin(θ+B)的值.

问题描述:

已知△ABC的内角B满足2cos2B-8cosB+5=0,又若

a
b
=−9,|
a
|=3
|
b
|=5
.θ为
a
b
的夹角.求sin(θ+B)的值.

∵2cos2B-8cosB+5=0
∴4cos2B-8cosB+3=0,
cosB=

1
2
, 或cosB=
3
2
(舍)
sinB=
3
2

又∵cosθ=
a
b
|
a
|•|
b
|
=
-9
3•5
=-
3
5
,且θ∈(0,π)
sinθ=
4
5

sin(θ+B)=
4
5
1
2
+(-
3
5
)•
3
2
=
4-3
3
10