已知三个正数a,b,c成等差数列,求证:1/(根号b+根号c),1/(根号c+根号a),1/(根号a+根号b)成等差数列

问题描述:

已知三个正数a,b,c成等差数列,求证:1/(根号b+根号c),1/(根号c+根号a),1/(根号a+根号b)成等差数列
懂了,谢

设a-b=b-c=d1/(sqrt(b)+sqrt(c))+1/(sqrt(a)+sqrt(b))=(sqrt(b)-sqrt(c))/(b-c)+(sqrt(a)-sqrt(b))/(a-c)=(sqrt(b)-sqrt(c)+sqrt(a)-sqrt(b))/d=2*(sqrt(a)-sqrt(c))/(2*d)=2*(sqrt(a)-sqrt(c))/(a-c)=2/(sqrt(a)+sq...