如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC. 求证:(1)∠AHD=∠AHE;(2)BH/BD=CH/CE.
问题描述:
如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC.
求证:(1)∠AHD=∠AHE;(2)
=BH BD
.CH CE
答
证明:(1)∵∠ADT=∠AHT=∠AET=90°,
∴D,E,H在以AT为直径的圆上,
∴∠AHD=∠ATD,∠AHE=∠ATE,
又∵AT是角平分线,TD⊥AB,TE⊥AC,
∴∠ATD=∠ATE,
∴∠AHD=∠AHE.
(2)直角△AHB与直角△TDB有公共角,
∴△AHB∽△TDB,
∴
=BH BD
.AH TD
同理:△AHC∽△TEC,
∴
=CH CE
AH TE
∵TD=TE,
∴
=BH BD
.CH CE