试讨论△ABC的重心,垂心,外心,内心"四心"中,若有其中"二心"互相重合,△ABC是否是等边三角形?
问题描述:
试讨论△ABC的重心,垂心,外心,内心"四心"中,若有其中"二心"互相重合,△ABC是否是等边三角形?
答
是,如图,延长AP交BC于D(前四种),理由如下:
①若P是重心,则BD=CD,
若P是垂心,则AD⊥BC
∴AD垂直平分BC,∴AB=AC,
同理BA=BC,∴△ABC是等边三角形
②,若P是重心,则BD=CD,
若P是外心,则PB=PC,
PD垂直平分BC,又∵点A在PD上∴AB=AC,
同理BA=BC,∴△ABC是等边三角形
③若P是重心, 则CD=BD,
若P是内心,则∠CAD=∠BAD,
延长AD至E,使DE=AD,
则由△ACD≌△EBD得AC=BE,∠CAD=∠E,
∴∠E=∠BAD,∴AB=BE=AC,
同理BA=BC,∴△ABC是等边三角形
④若P是垂心,则∠ADB=∠ADC=90°,
若P是内心,则∠BAD=∠CAD,
又∵AD=AD,∴△ABD≌△ACD,
∴AB=AC
同理BA=BC,∴△ABC是等边三角形
⑤若P是垂心,则AP⊥BC,
若P是外心,则P在BC的中垂线上,
由垂线的唯一性得AP即BC的中垂线,
∴AB=AC,
同理BA=BC,∴△ABC是等边三角形
⑥取三边中点D、G、F,分别连结PA、PB、PC、PD、PF、PG,
若P是内心,则∠GAP=∠FAP,
若P是外心,则PF⊥AC,PG⊥AB,即∠AFP=∠AGP=90°,
又∵AP=AP,∴△AFP≌△AGP,
又∵△AFP≌△CFP,
∴图中6个小△全等,以P为顶点的内角=60°,
∴以A、B、C为顶点的内角=30°,
∴∠BAC=∠ABC=∠ACB=60°,
∴△ABC是等边三角形