证明斯坦纳—雷米欧斯定理,最好用初中的知识.
问题描述:
证明斯坦纳—雷米欧斯定理,最好用初中的知识.
答
设三角形ABC,∠B=2a,∠C=2b,角平分线BD=CE
分别以BD,CE为底边,以a+b为底角向上做两个等腰三角形BDF,CEG
连接AF,AG ,则ADBF四点共圆,AGCE四点也共圆
因∠1+∠2=∠1+∠3=∠1+b+a=180度
所以FAG共线
∠4+∠BCG=∠4+(b+b+a)=∠5+(b+b)+a=180度
所以BCGF四点共圆
因△FBD≌△GEC
所以BF=CG,结合共圆条件得FG//BC,等腰梯形,∠FBC=∠GCB
b+a+a=b+b+a
整理得∠B=∠C