当n.>=0时,多项式x^(n+2)+(〖x+1)〗^(2n+1)能被x^2+x+1整除.请用数学归纳法证明
问题描述:
当n.>=0时,多项式x^(n+2)+(〖x+1)〗^(2n+1)能被x^2+x+1整除.请用数学归纳法证明
答
当n=0时,x^(n+2)+(〖x+1)〗^(2n+1)=x^2+x+1能被x^2+x+1整除.设当n=m时,x^(m+2)+(〖x+1)〗^(2m+1)能被x^2+x+1整除.那么当n=m+1时,x^(n+2)+(〖x+1)〗^(2n+1)=x^(m+1+2)+(〖x+1)〗^(2(m+1)+1)=x*x^(m+2)+(x+1)^2*(...