已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.(1)若直线l过点P且与圆心C的距离为1,求直线l的方程;(2)设过点P的直线ll与圆C交于M、N两点,当|MN|=4时,求以线段MN为直径的圆Q的方程;(3)设直
问题描述:
已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.
(1)若直线l过点P且与圆心C的距离为1,求直线l的方程;
(2)设过点P的直线ll与圆C交于M、N两点,当|MN|=4时,求以线段MN为直径的圆Q的方程;
(3)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
答
(1)设直线l的斜率为k(k存在)则方程为y-0=k(x-2).又圆C的圆心为(3,-2),半径r=3,由|3k+2-2k|k2+1=1,解得k=-34.所以直线方程为y=-34(x-2),即3x+4y-6=0;当l的斜率不存在时,l的方程为x=2,经验证x=2也...