17(福建)南平已知:如图① , A是半径为2的⊙O上的一点,P是OA延长线上的一动点,过P作⊙O的切线,切点为B、设PA=m , PB=n . ⑴当n=4时,求m的值;⑵⊙O上是否存在点C,使△PBC为等边三角形?若存在,请求出此时m的值

问题描述:

17(福建)南平已知:如图① , A是半径为2的⊙O上的一点,P是OA延长线上的一动点,过P作⊙O的切线,切点为B、设PA=m , PB=n . ⑴当n=4时,求m的值;⑵⊙O上是否存在点C,使△PBC为等边三角形?若存在,请求出此时m的值;若不存在,请说明理由; ⑶当 m 为何值时,⊙O上存在唯一点M和PB构成以PB为底的等腰三角形?并直接答出:此时⊙O上能与PB构成等腰三角形的点共有几个?(图②、图③供解题时选用)

(1)解法一:连接OB.∵PB切⊙O于B,∴∠OBP=90°,∴PO^2=PB^2+OB^2,∵PO=2+m,PB=n,OB=2,∴(2+m)2=n2+2^2 m^2+4m=n2;n=4时,解,得:m1=-2√5-2(舍去),m2=2√5-2.∴m的值为 2√5-2.解法二:延长PO交⊙O于Q,PAQ...