证明三角形的面积:S=a2sinBsinc∕2sinA=b2sinAsinC/2sinB=c2sinAsinB/2sinc
问题描述:
证明三角形的面积:S=a2sinBsinc∕2sinA=b2sinAsinC/2sinB=c2sinAsinB/2sinc
答
由正弦定理,b=asinB/sinA,
∴△ABC的面积S=(1/2)absinC=a^2*sinBsinC/(2sinA),
同理,S=b^2*sinAsinC/(2sinB)=c^2*sinAsinB/(2sinC).