在正棱锥P-ABC中,三条側棱两两互相垂直,G是△PAB的重心,E,F分别为BC,PB上的点,且BE:EC=PF:FB=1:2.(1)求证:平面GEF⊥平面PBC;(2)求证:EG是PG与BC的公垂线段.
问题描述:
在正棱锥P-ABC中,三条側棱两两互相垂直,G是△PAB的重心,E,F分别为BC,PB上的点,且BE:EC=PF:FB=1:2.
(1)求证:平面GEF⊥平面PBC;
(2)求证:EG是PG与BC的公垂线段.
答
证明:(1)在△PAB中,连接BG延长线交AP与点M
∵G是△PAB的重心,
∴MG=
MB,1 3
∵PF:FB=1:2,即PF=
PB,1 3
∴GF∥PM
又PA、PB、PC两两垂直,
∴PA⊥平面PBC,又∵GF∥PA
∴GF⊥平面PBC
又∵GF⊂平面GEF
∴平面GEF⊥平面PBC;
(2)取EC的中点Q,连接FQ,
∵BE:EC=PF:FB=1:2
∴BQ:QC=2:1
∴FQ∥PC
∴FB=FQ
∴EF⊥BC
又∵GF⊥平面PBC
∴GF⊥BC
由GF∩EF=F
∴BC⊥平面GEF
∴EG⊥BC
取FB的中点N,则PG:GD=PN:NB=2:1
即GN∥BD
在等腰三角形PAB中,BD⊥PD
∴PG⊥GN
又∵PN:NB=CE:EB=2:1
∴NE∥PC
由又PA、PB、PC两两垂直,
∴PC⊥平面PAB,
又∵PG⊂平面PAB
∴PC⊥PG
∴NE⊥PG
又NE∩GN=N
∴PG⊥平面GNE
∴PG⊥EG
即EG是PG与BC的公垂线段