设数列an满足an=(1+2+...+n)[(1-1/2)(1-1/3)( 1-1/4) ...( 1-1/n) ]^2,求liman的值

问题描述:

设数列an满足an=(1+2+...+n)[(1-1/2)(1-1/3)( 1-1/4) ...( 1-1/n) ]^2,求liman的值

1+2+……+n=n(n+1)/2
(1-1/2)(1-1/3)( 1-1/4) ...( 1-1/n)
=(1/2)(2/3)(3/4)……[(n-1)/n]
=1/n
所以an=[n(n+1)/2]*1/n^2=(n+1)/2n
上下除n
an=(1+1/n)/2
n→∞,1/n→0
所以liman(n→∞)=(1+0)/2=1/2