已知(4x^2+11xy-3y^2)/(x+3y),求y^2+8x的最小值 好的给追加,快
问题描述:
已知(4x^2+11xy-3y^2)/(x+3y),求y^2+8x的最小值 好的给追加,快
纠正一下:已知(4x^2+11xy-3y^2)/(x+3y)=0,求y^2+8x的最小值
答
(4x^2+11xy-3y^2)/(x+3y)=0
4x^2+11xy-3y^2=0且x+3y=0
(4x-y)(x+3y)=0
4x-y=0
y=4x
于是
y^2+8x
=16x^2+8x
=(4x)²+8x+1-1
=(4x+1)²-1≥-1
所以y^2+8x的最小值为-1请问,为什么 (4x-y)(x+3y)=04x-y=0(4x-y)(x+3y)=0相乘为0,而x+3y≠0所以只能是 4x-y=0上面一个符号写错了(4x^2+11xy-3y^2)/(x+3y)=04x^2+11xy-3y^2=0且x+3y≠0(4x-y)(x+3y)=04x-y=0y=4x于是y^2+8x=16x^2+8x=(4x)²+8x+1-1=(4x+1)²-1≥-1所以y^2+8x的最小值为-1