如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=kx(k≠0)与△ABC有交点,则k的取值范围是

问题描述:

如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=

k
x
(k≠0)与△ABC有交点,则k的取值范围是(  )
A. 1<k<2
B. 1≤k≤3
C. 1≤k≤4
D. 1≤k<4

点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则A的坐标是(1,1),
∵AB=AC=2,
∴B点的坐标是(3,1),
∴BC的中点坐标为(2,2)
当双曲线y=

k
x
经过点(1,1)时,k=1;
当双曲线y=
k
x
经过点(2,2)时,k=4,
因而1≤k≤4.
故选C.