已知|m-3|+(n+2)的平方=0,则2m²-n=
问题描述:
已知|m-3|+(n+2)的平方=0,则2m²-n=
答
∵Im-3I≥0,(n+2)^2≥0;
要使IM-3I+(n+2)=0,则必有:
m-3=0,n+2=0
解之得:m=3,n=-2
∴2m^2-n=2*3^2-(-2)
=20