已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为(  ) A.52-4 B.17−1 C.6-22 D.17

问题描述:

已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为(  )
A. 5

2
-4
B.
17
1
C. 6-2
2

D.
17

如图圆C1关于x轴的对称圆的圆心坐标A(2,-3),半径为1,
圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,
即:

(3−2)2+(4+3)2
−1−3=5
2
-4.
故选A.