设二次函数f(x)=mx^2+nx+t的图象过原点,g(x)=ax^3+bx-3(x>0),f'(0)=0,f'(-1)=-2,f(1)=g(1),f'(1)=g'(1.)

问题描述:

设二次函数f(x)=mx^2+nx+t的图象过原点,g(x)=ax^3+bx-3(x>0),f'(0)=0,f'(-1)=-2,f(1)=g(1),f'(1)=g'(1.)
是否存在km是f(x)>=kx+m和g(x)

函数f(x)=mx^2+nx+t的图象过原点(0.0)f(0)=t=0f'(x)=2mx+nf'(0)=0,f'(-1)=-2所以:n=0 m=1f(x)=x²f(1)=1=g(1)=a+b-3f'(1)=2=g'(1)=3a+b得:a=-1 b=5g(x)=-x^3+5x-3假设存在km使其满足f(x)≥kx+m和g(x)≤kx+m则...