如图,△ABC中,AB=AC,两条角平分线BD、CE相交于点O. (1)OB与OC相等吗?请说明你的理由; (2)若连接AO,并延长AO交BC边于F点.你有哪些发现请写出两条,并就其中的一条发现写出你的发

问题描述:

如图,△ABC中,AB=AC,两条角平分线BD、CE相交于点O.

(1)OB与OC相等吗?请说明你的理由;
(2)若连接AO,并延长AO交BC边于F点.你有哪些发现请写出两条,并就其中的一条发现写出你的发现过程.

(1)OB=OC
证明:∵AB=AC,两条角平分线BD、CE相交于点O
∴∠OBC=∠OCB
∴OB=OC
(2)AF是∠BAC的角平分线,AF⊥BC
证明:∵OA=OA,OB=OC,AB=AC
∴△ABO≌△ACO
∴∠BAO=∠CAO
即AF是∠BAC的角平分线
∵△ABC是等腰三角形,且AF是∠BAC的角平分线
∴AF⊥BC.