如何解方程a^4-7a^3+5a^2+7a-6?
问题描述:
如何解方程a^4-7a^3+5a^2+7a-6?
答
a^4-7a^3+5a^2+7a-6=0→(a^4-2a^3+a^2)-(5a^3-10a^2+5a)-(6a^2-12a+6)=0→a^2(a^2-2a+1)-5a(a^2-2a+1)-6(a^2-2a+1)=0→(a^2-2a+1)(a^2-5a-6)=0→(a-1)²(a+1)(a-6)=0∴a1=a2=1,a3=-1,a4=6....