用比值审敛法判定下列级数的敛散性

问题描述:

用比值审敛法判定下列级数的敛散性
用比值审敛法
∑(2^n)/n!
∑上是无穷符号,下是n=1
比值后的结果是lim(n/(n+1))^n,
错了应该是∑(n-1)!/n^(n-1)

对∑(2^n)/n!
则an=(2^n)/n!
因为a(n+1)/an=[(2^(n+1))/(n+1)!]/[(2^n)/n!]=2/(n+1)
所以lim[a(n+1)/an]=lim[(2^(n+1))/(n+1)!]/[(2^n)/n!]=lim[2/(n+1)]=0