已知函数f(x)=-x2+8x,求f(x)在区间[t,t+1]上的最大值h(t).
问题描述:
已知函数f(x)=-x2+8x,求f(x)在区间[t,t+1]上的最大值h(t).
答
因为f(x)=-x2+8x=-(x-4)2+16.
①当t+1<4,即t<3时,f(x)在[t,t+1]上单调递增,
则h(t)=f(t+1)=-(t+1)2+8(t+1)=-t2+6t+7;
②当t≤4≤t+1,即3≤t≤4时,h(t)=f(4)=16;
③当t>4时,f(x)在[t,t+1]上单调递减,
h(t)=f(t)=-t2+8t.
综上,h(t)=
.
−t2+6t+7,t<3 16,3≤t≤4 −t2+8t,t>4