sin315-cos135+2sin570的值是

问题描述:

sin315-cos135+2sin570的值是
若sin20cos50=a,则sin50sin70的值是什么

sin315-cos135+2sin570
=sin(360-45)-cos(180-45)+2sin(540+30)
=sin(-45)+cos(-45)-2sin30
=-sin45+cos45-2sin30
=-√2/2+√2/2-2x1/2
=0-1
=-1
sin50sin70=cos20sin50
于是
cos20sin50-sin20cos50
=sin(50-20)
=sin30
=1/2
所以
sin50sin70=a+1/2