已知|a|=2,|b|=3,a与b的夹角为60°,c=5a+3b,d=3a+kb, (1)求|a+b|的值; (2)当实数k为何值时,c∥d; (3)当实数k为何值时,c⊥d.

问题描述:

已知|

a
|=2,|
b
|=3,
a
b
的夹角为60°,
c
=5
a
+3
b
d
=3
a
+k
b

(1)求|
a
+
b
|的值;
(2)当实数k为何值时,
c
d

(3)当实数k为何值时,
c
d

(1)由|a+b|2=a2+b2+2a•b=4+9+2×6×12=19, 得|a+b|=19;(2)若c∥d,则存在实数λ,使5a+3b=λ(3a+kb),∴5=3λ3=λk,解得k=95;(3)c⊥d等价于c•d=0.即15a2+3kb2+(5k+9)a•b=0,60+27k+3(5k+9...