已知|a|=2,|b|=3,a与b的夹角为60°,c=5a+3b,d=3a+kb, (1)求|a+b|的值; (2)当实数k为何值时,c∥d; (3)当实数k为何值时,c⊥d.
问题描述:
已知|
a |
b |
a |
b |
c |
a |
b |
d |
a |
b |
(1)求|
a |
b |
(2)当实数k为何值时,
c |
d |
(3)当实数k为何值时,
c |
d |
答
(1)由|a+b|2=a2+b2+2a•b=4+9+2×6×12=19, 得|a+b|=19;(2)若c∥d,则存在实数λ,使5a+3b=λ(3a+kb),∴5=3λ3=λk,解得k=95;(3)c⊥d等价于c•d=0.即15a2+3kb2+(5k+9)a•b=0,60+27k+3(5k+9...