f(x)=(ax^2+1)/(bx*c)是奇函数,其中ABC∈Z,若f(1)=2,f(2)<3,求a b c 的值
问题描述:
f(x)=(ax^2+1)/(bx*c)是奇函数,其中ABC∈Z,若f(1)=2,f(2)<3,求a b c 的值
到底那个是对的,看不懂了。
答
f(-x)=(ax^2+1)/(-bx*c)=--(ax^2+1)/(bx*c)=-f(x)
可见函数是奇函数
f(1)=(a+1)/(bc)=2
即a+1=2bc(1)
f(2)=(4a+1)/(2bc)