如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于点H,连CH. (1)求证:△ACD≌△BCE; (2)求证:CH平分∠AHE; (3)求∠CHE的度数.(用含α的式子表示)
问题描述:
如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于点H,连CH.
(1)求证:△ACD≌△BCE;
(2)求证:CH平分∠AHE;
(3)求∠CHE的度数.(用含α的式子表示)
答
(1)证明:∵∠ACB=∠DCE=α,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
,
CA=CB ∠ACD=∠BCE CD=CE
∴△ACD≌△BCE(SAS);
(2)证明:过点C作CM⊥AD于M,CN⊥BE于N,
∵△ACD≌△BCE,
∴∠CAM=∠CBN,
在△ACM和△BCN中,
,
∠CAM=∠CBN ∠AMC=∠BNC=90° AC=BC
∴△ACM≌△BCN,
∴CM=CN,
∴CH平分∠AHE;
(3)∵△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠AMC=∠AMC,
∴∠AHB=∠ACB=α,
∴∠AHE=180°-α,
∴∠CHE=
∠AHE=90°-1 2
α.1 2