我要初二上期数学题40道,难度中偏上,要带详细答案的.谢谢.满意的话加10分.谢谢啦~
我要初二上期数学题40道,难度中偏上,要带详细答案的.谢谢.满意的话加10分.谢谢啦~
1、平面直角坐标系中,点A的坐标为(4,0),点P在直线y=-x-m上,且AP=OP=4,则m的值是多少?
2、如图,已知点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,试求点B的坐标.
3、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线y=1/3x+b恰好将矩形OABC分为面积相等的两部分,试求b的值.
4、如图,在平面直角坐标系中,直线y= 2x —6与x轴、y轴分别相交于点A、B,点C在x轴上,若△ABC是等腰三角形,试求点C的坐标.
5、在平面直角坐标系中,已知A(1,4)、B(3,1),P是坐标轴上一点,(1)当P的坐标为多少时,AP+BP取最小值,最小值为多少? 当P的坐标为多少时,AP-BP取最大值,最大值为多少?
6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式.
7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式.
8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6)
求k1,k2的值
如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标
9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A点的坐标是(-1,0),
(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;
(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式.
10、在平面直角坐标系中,一次函数y=Kx+b(b小于0)的图像分别与x轴、y轴和直线x=4交于A、B、C,直线x=4与x轴交于点D,四边形OBCD的面积为10,若A的横坐标为-1/2,求此一次函数的关系式
11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y轴交于点A,且OA=OB:求这个一次函数解析式
12、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,m)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,SAOP=6.
求:(1)△COP的面积
(2)求点A的坐标及m的值;
(3)若SBOP =SDOP ,求直线BD的解析式
13、一次函数y=- x+1的图像与x轴、y轴分别交于点A、B,以AB为边在第一象限内做等边△ABC
(1)求△ABC的面积和点C的坐标;
(2)如果在第二象限内有一点P(a, ),试用含a的代数式表示四边形ABPO的面积.
(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
14、已知正比例函数y=k1x和一次函数y=k2x+b的图像如图,它们的交点A(-3,4),且OB= OA.
(1)求正比例函数和一次函数的解析式;
(2)求△AOB的面积和周长;
(3)在平面直角坐标系中是否存在点P,使P、O、A、B成为直角梯形的四个顶点?若存在,请直接写出P点的坐标;若不存在,请说明理由.
15、如图,已知一次函数y=x+2的图像与x轴交于点A,与y轴交于点C,
(1)求∠CAO的度数;
(2)若将直线y=x+2沿x轴向左平移两个单位,试求出平移后的直线的解析式;
(3)若正比例函数y=kx (k≠0)的图像与y=x+2得图像交于点B,且∠ABO=30°,求:AB的长及点B的坐标 .
16、一次函数y= x+2的图像与x轴、y轴分别交于点A、B,以AB为边在第二象限内做等边△ABC
(1)求C点的坐标;
(2)在第二象限内有一点M(m,1),使S△ABM =S△ABC ,求M点的坐标;
(3)点C(2 ,0)在直线AB上是否存在一点P,使△ACP为等腰三角形?若存在,求P点的坐标;若不存在,说明理由.
17、已知正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),一次函数与x轴相交于B,且OB=0.6OA,求这两个函数的解析式
18、已知一次函数y=x+2的图像经过点A(2,m).与x轴交于点c,求角AOC.
19、已知函数y=kx+b的图像经过点A(4,3)且与一次函数y=x+1的图像平行,点B(2,m)在一次函数y=kx+b的图像上
(1)求此一次函数的表达式和m的值?
(2)若在x轴上有一动点P(x,0),到定点A(4,3)、B(2,m)的距离分别为PA和PB,当点P的横坐标为多少时,PA+PB的值最小?
答案
3、点到线的最短距离是点向该线做垂线因为直线与x夹角45度 所以ABO为等腰直角三角形AB=BO=2分之根号2倍的AOAO=1 BO=2分之根号2
在B分别向xy做垂线 垂线与轴交点就是B的坐标
由于做完还是等腰直角三角形 所以议案用上面的共识 可知B点坐标是(0.5,-0.5)
7、一次函数 的解析式为y=8x+4或y=(25/2)x-5.设一次函数为y=kx+b,则它与两坐标轴的交点是(-b/k,0)(0,b),所以有20=2x+b,|-b/k×b|×1/2=1,解之得k1=8,b1=4;k2=25/2,b2=-5.所以,一次函数 的解析式为y=8x+4或y=(25/2)x-5
8、因为正比例函数和一次函数都经过(3,-6)
所以这点在两函数图像上
所以, 当x=3 y=-6 分别代入 得
k1= -2 k2=1
若一次函数图像与x轴交于点A 说明A的纵坐标为0
把y=0代入到y=x-9中得 x=9
所以A(9,0)
例4、A的横坐标=-1/2,纵坐标=0
0=-k/2+b,k=2b
C点横坐标=4,纵坐标y=4k+b=9b
B点横坐标=0,纵坐标y=b
Sobcd=(\9b\+\b\)*4/2=10
10\b\=5
\b\=1/2
b=1/2,k=2b=1 y=x+1/2
b=-1/2,k=-1y=-x-1/2
\b\表示b的绝对值
11、?设这个一次函数解析式为y=kx+b
∵y=kx+b经过点B(-3,4),与y轴交与点A,且OA=OB
∴{-3k+b=4
{3k+b=0
∴{k=-2/3
{b=2
∴这个函数解析式为y=-2/3x+2
?解2根据勾股定理求出OA=OB=5,
所以,分为两种情况:
当A(0,5)时,将B(-3,4)代入y=kx+b中,y=x/3+5,
当A(0,-5),将B(-3,4)代入y=kx+b中y=3x+5,
12、做辅助线PF,垂直y轴于点F.做辅助线PE垂直x轴于点E.
(1)求S三角形COP
S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2
(2)求点A的坐标及P的值
可证明三角形CFP全等于三角形COA,于是有
PF/OA = FC/OC.代入PF=2和OC=2,于是有FC * OA = 4.(1式)
又因为S三角形AOP=6,根据三角形面积公式有S = 1/2 * AO * PE = 6,于是得到AO * PE = 12.(2式)
其中PE = OC + FC = 2 + FC,所以(2)式等于AO * (2 + FC) = 12.(3式)
通过(1)式和(3)式组成的方程组就解,可以得到AO = 4, FC = 1.
p = FC + OC = 1 + 2 = 3.
所以得到A点的坐标为(-4, 0), P点坐标为(2, 3), p值为3.
(3)若S三角形BOP=S三角形DOP,求直线BD的解析式
因为S三角形BOP=S三角形DOP,就有(1/2)*OB*PE = (1/2)*PF*OD,即
(1/2)*(OE+BE)*PE = (1/2)*PF*(OF+FD),将上面求得的值代入有
(1/2)*(2+BE)*3 = (1/2)*2*(3+FD)即 3BE = 2FD.
又因为:FD:DO = PF:OB 即 FD:(3+FD) = 2:(2+BE),可知BE=2.B坐标为(4,0)
将BE=2代入上式3BE=2FD,可得FD = 3. D坐标为(0,6)
因此可以得到直线BD的解析式为:
y = (-3/2)x + 6
17、正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),所以有 8K1=6. (1)
8K2+b=6 . (2) 又OA=10 所以OB=6 即B点坐标(6,0) 所以6K2+b=0 . (3) 解(1)(2)(3)得K1=3/4 K2=3 b=-18
OA=√(8^2+6^2)=10,OB=6,B(6,0),k1=6/8=0.75
正比例函数y=0.75x,一次函数y=3x-18
18、一次函数y=x+2的图像经过点a(2,m),有
m=2+2=4,
与x轴交于点c,当y=0时,x=-2.
三角形aoc的面积是:1/2*|oc|m|=1/2*|-2|*|4|=4平方单位.
19、两直线平行,斜率相等
故k=1,即直线方程为y=x+b经过点(4,3) 代入有:
b=-1
故一次函数的表达式为:y=x-1
经过点(2,m)代入有:
m=1
2)A(4,3),B(2,1)要使得PA+PB最小,则P,A,B在一直线上
AB的直线方程为:
(y-1)/(3-1)=(x-2)/(4-2)过点(x,0)代入有:
(0-1)/2=(x-2)/2
x=1
即当点P的横坐标为1时,PA+PB的值最小.1.将一个正方形钟表的表面以时针线为界把平面分成十二个区域,求Q/T.
2.如图,△ABC的边AB=2,AC=3,I、II、III分别表示以AB、BC、CA为边的正方形,求途中三个阴影部分面积的和的最大值.
少画了一些东西.
I是正方形BDEA
II是正方形KBCH
III是正方形CAFG
回答者: 悠游1115 | 三级 | 2010-12-14 18:52
m^2加m=0,求m^3加 12m^2加2010的值.
回答者: 热心网友 | 2010-12-14 19:03
1、平面直角坐标系中,点A的坐标为(4,0),点P在直线y=-x-m上,且AP=OP=4,则m的值是多少?
2、如图,已知点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,试求点B的坐标.
3、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线y=1/3x+b恰好将矩形OABC分为面积相等的两部分,试求b的值.
4、如图,在平面直角坐标系中,直线y= 2x —6与x轴、y轴分别相交于点A、B,点C在x轴上,若△ABC是等腰三角形,试求点C的坐标.
5、在平面直角坐标系中,已知A(1,4)、B(3,1),P是坐标轴上一点,(1)当P的坐标为多少时,AP+BP取最小值,最小值为多少? 当P的坐标为多少时,AP-BP取最大值,最大值为多少?
6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式.
7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式.
8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6)
求k1,k2的值
如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标
9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A点的坐标是(-1,0),
(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;
(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式.
10、在平面直角坐标系中,一次函数y=Kx+b(b小于0)的图像分别与x轴、y轴和直线x=4交于A、B、C,直线x=4与x轴交于点D,四边形OBCD的面积为10,若A的横坐标为-1/2,求此一次函数的关系式
11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y轴交于点A,且OA=OB:求这个一次函数解析式
12、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,m)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,SAOP=6.
求:(1)△COP的面积
(2)求点A的坐标及m的值;
(3)若SBOP =SDOP ,求直线BD的解析式
13、一次函数y=- x+1的图像与x轴、y轴分别交于点A、B,以AB为边在第一象限内做等边△ABC
(1)求△ABC的面积和点C的坐标;
(2)如果在第二象限内有一点P(a, ),试用含a的代数式表示四边形ABPO的面积.
(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
14、已知正比例函数y=k1x和一次函数y=k2x+b的图像如图,它们的交点A(-3,4),且OB= OA.
(1)求正比例函数和一次函数的解析式;
(2)求△AOB的面积和周长;
(3)在平面直角坐标系中是否存在点P,使P、O、A、B成为直角梯形的四个顶点?若存在,请直接写出P点的坐标;若不存在,请说明理由.
15、如图,已知一次函数y=x+2的图像与x轴交于点A,与y轴交于点C,
(1)求∠CAO的度数;
(2)若将直线y=x+2沿x轴向左平移两个单位,试求出平移后的直线的解析式;
(3)若正比例函数y=kx (k≠0)的图像与y=x+2得图像交于点B,且∠ABO=30°,求:AB的长及点B的坐标 .
16、一次函数y= x+2的图像与x轴、y轴分别交于点A、B,以AB为边在第二象限内做等边△ABC
(1)求C点的坐标;
(2)在第二象限内有一点M(m,1),使S△ABM =S△ABC ,求M点的坐标;
(3)点C(2 ,0)在直线AB上是否存在一点P,使△ACP为等腰三角形?若存在,求P点的坐标;若不存在,说明理由.
17、已知正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),一次函数与x轴相交于B,且OB=0.6OA,求这两个函数的解析式
18、已知一次函数y=x+2的图像经过点A(2,m).与x轴交于点c,求角AOC.
19、已知函数y=kx+b的图像经过点A(4,3)且与一次函数y=x+1的图像平行,点B(2,m)在一次函数y=kx+b的图像上
(1)求此一次函数的表达式和m的值?
(2)若在x轴上有一动点P(x,0),到定点A(4,3)、B(2,m)的距离分别为PA和PB,当点P的横坐标为多少时,PA+PB的值最小?
答案
3、点到线的最短距离是点向该线做垂线因为直线与x夹角45度 所以ABO为等腰直角三角形AB=BO=2分之根号2倍的AOAO=1 BO=2分之根号2
在B分别向xy做垂线 垂线与轴交点就是B的坐标
由于做完还是等腰直角三角形 所以议案用上面的共识 可知B点坐标是(0.5,-0.5)
7、一次函数 的解析式为y=8x+4或y=(25/2)x-5.设一次函数为y=kx+b,则它与两坐标轴的交点是(-b/k,0)(0,b),所以有20=2x+b,|-b/k×b|×1/2=1,解之得k1=8,b1=4;k2=25/2,b2=-5.所以,一次函数 的解析式为y=8x+4或y=(25/2)x-5
8、因为正比例函数和一次函数都经过(3,-6)
所以这点在两函数图像上
所以, 当x=3 y=-6 分别代入 得
k1= -2 k2=1
若一次函数图像与x轴交于点A 说明A的纵坐标为0
把y=0代入到y=x-9中得 x=9
所以A(9,0)
例4、A的横坐标=-1/2,纵坐标=0
0=-k/2+b,k=2b
C点横坐标=4,纵坐标y=4k+b=9b
B点横坐标=0,纵坐标y=b
Sobcd=(\9b\+\b\)*4/2=10
10\b\=5
\b\=1/2
b=1/2,k=2b=1 y=x+1/2
b=-1/2,k=-1y=-x-1/2
\b\表示b的绝对值
11、?设这个一次函数解析式为y=kx+b
∵y=kx+b经过点B(-3,4),与y轴交与点A,且OA=OB
∴{-3k+b=4
{3k+b=0
∴{k=-2/3
{b=2
∴这个函数解析式为y=-2/3x+2
?解2根据勾股定理求出OA=OB=5,
所以,分为两种情况:
当A(0,5)时,将B(-3,4)代入y=kx+b中,y=x/3+5,
当A(0,-5),将B(-3,4)代入y=kx+b中y=3x+5,
12、做辅助线PF,垂直y轴于点F.做辅助线PE垂直x轴于点E.
(1)求S三角形COP
S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2
(2)求点A的坐标及P的值
可证明三角形CFP全等于三角形COA,于是有
PF/OA = FC/OC.代入PF=2和OC=2,于是有FC * OA = 4.(1式)
又因为S三角形AOP=6,根据三角形面积公式有S = 1/2 * AO * PE = 6,于是得到AO * PE = 12.(2式)
其中PE = OC + FC = 2 + FC,所以(2)式等于AO * (2 + FC) = 12.(3式)
通过(1)式和(3)式组成的方程组就解,可以得到AO = 4, FC = 1.
p = FC + OC = 1 + 2 = 3.
所以得到A点的坐标为(-4, 0), P点坐标为(2, 3), p值为3.
(3)若S三角形BOP=S三角形DOP,求直线BD的解析式
因为S三角形BOP=S三角形DOP,就有(1/2)*OB*PE = (1/2)*PF*OD,即
(1/2)*(OE+BE)*PE = (1/2)*PF*(OF+FD),将上面求得的值代入有
(1/2)*(2+BE)*3 = (1/2)*2*(3+FD)即 3BE = 2FD.
又因为:FD:DO = PF:OB 即 FD:(3+FD) = 2:(2+BE),可知BE=2.B坐标为(4,0)
将BE=2代入上式3BE=2FD,可得FD = 3. D坐标为(0,6)
因此可以得到直线BD的解析式为:
y = (-3/2)x + 6
17、正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),所以有 8K1=6. (1)
8K2+b=6 . (2) 又OA=10 所以OB=6 即B点坐标(6,0) 所以6K2+b=0 . (3) 解(1)(2)(3)得K1=3/4 K2=3 b=-18
OA=√(8^2+6^2)=10,OB=6,B(6,0),k1=6/8=0.75
正比例函数y=0.75x,一次函数y=3x-18
18、一次函数y=x+2的图像经过点a(2,m),有
m=2+2=4,
与x轴交于点c,当y=0时,x=-2.
三角形aoc的面积是:1/2*|oc|m|=1/2*|-2|*|4|=4平方单位.
19、两直线平行,斜率相等
故k=1,即直线方程为y=x+b经过点(4,3) 代入有:
b=-1
故一次函数的表达式为:y=x-1
经过点(2,m)代入有:
m=1
2)A(4,3),B(2,1)要使得PA+PB最小,则P,A,B在一直线上
AB的直线方程为:
(y-1)/(3-1)=(x-2)/(4-2)过点(x,0)代入有:
(0-1)/2=(x-2)/2
x=1
即当点P的横坐标为1时,PA+PB的值最小.