若x^2+y^2+Z^2-2X+4Y+6Z+16=2

问题描述:

若x^2+y^2+Z^2-2X+4Y+6Z+16=2
则x+y+z=

x^2+y^2+Z^2-2X+4Y+6Z+16=2(x^2-2x+1)+(y^2+4y+4)+(z^2+6z+9)=0(x-1)^2+(y+2)^2+(x+3)^2=0因为(x-1)^2>=0 (y+2)^2>=0 (z+3)^2>=0所以(x-1)^2=(y+2)^2=(z+3)^2=0x=1,y=-2,c=-3x+y+z=1-2-3=-4