在光滑水平面上有AB两个小球沿同一直线运动,

问题描述:

在光滑水平面上有AB两个小球沿同一直线运动,
碰撞后两个小球粘在一起.已知碰撞前它们的动量分别为pA=+12kgm/s,pB=+28kgm/s,碰撞后A的动量变为pA'=+24kgm/s,则可知碰撞前两球的速度之比为.

m(a)v(a)=+12
m(b)v(b)=+28
m(a)v ' =+24
碰撞后两个小球粘在一起,由动量守恒定律,有 m(b)v '= 12+28-24= 16
m(a)/m(b)= 24/16= 3/2
所以v(a)/v(b)= (12/28) ×(2/3) =2/7