在一个盒子里有红、黄、黑三种颜色的小球共88个.已知从中任意取出24个,就可以保证至少有10个小球是同色的.问在满足上述条件下,无论各种颜色的小球如何分配,至少要从盒子中任意
问题描述:
在一个盒子里有红、黄、黑三种颜色的小球共88个.已知从中任意取出24个,就可以保证至少有10个小球是同色的.问在满足上述条件下,无论各种颜色的小球如何分配,至少要从盒子中任意取出多少个小球,才能保证至少有20个小球是同色的?
答
证明:只取出43个球是不够的,事实上,当盒子中有42个红球、41个黄球、5个黑球时,任取24个球,则红球与黄球至少有24-5=19个,从而,红球或黄球中必有一种大于或等于10个,而19个红球,19个黄球,5个黑球,共43个球...