已知函数y=y(x)由e的xy次方+tan(xy)确定,求dy|x=0
问题描述:
已知函数y=y(x)由e的xy次方+tan(xy)确定,求dy|x=0
答
y = e^xy+tan(xy)
y' = (xy)'*e^xy +(xy)' *(1/(1+(xy)^2) = (y+xy') *(e^xy+(1/(1+(xy)^2))
然后分离出y'就可以了,打字太复杂,自己算下吧