线性代数,非齐次方程组的解.
问题描述:
线性代数,非齐次方程组的解.
对于同一矩阵A关于非齐次线性方程组Ax=b(b不等于0)和齐次线性方程组Ax=0则()
A、Ax=0无非零解时,Ax=b无解
B、Ax=0有无穷多解时,Ax=b有无穷多解
C、Ax=b无解时,Ax=0无非零解
D、Ax=b 有唯一解时,Ax=0只有零解
应该选D但,B为什么不对?
***齐次线性方程组,可不可能只有两个解,一个零解,一个非零的唯一解?
答
Ax=0无非零解时.则A为满秩矩阵.则Ax=b一定有解Ax=0有无穷多解时,则A一定不为满秩矩阵,Ax=b的解得情况有无解和无穷多解R(A)≠R(A|b)R(A)等于R(A|b).且不为满秩Ax=b无解时,可知Ax=0一定有无穷多解Ax=b 有唯一解时,可知...