求定积分,上限3/4,下限-3/4,(1+x)^3除以根号下(1-|x|)dx答案为133/40

问题描述:

求定积分,上限3/4,下限-3/4,(1+x)^3除以根号下(1-|x|)dx答案为133/40

定积分,上限3/4,下限-3/4,(1+x)^3除以根号下(1-|x|)dx
=定积分,上限3/4,下限-3/4,x³+3x²+3x+1除以根号下(1-|x|)dx
=∫(-3/4,3/4)(3x²+1)/根号下(1-|x|)dx
=2∫(0,3/4)(3x²+1)/根号下(1-x)dx
令根号(1-x)=t
x=1-t²,dx=-2tdt
原式=2∫(0,3/4)(3-6t²+3t^4+1)/t*(-2tdt)
=-4∫(0,3/4)(3-6t²+3t^4+1)dt
=-4(4t-2t³+3t^5/5)|(0,3/4)
=133/40