有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有(  )A. 1344种B. 1248种C. 1056种D. 960种

问题描述:

有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有(  )
A. 1344种
B. 1248种
C. 1056种
D. 960种

根据题意,要求3行中仅有中间行的两张卡片上的数字之和为5,则中间行的数字只能为1,4或2,3,共有C21A22=4种排法,
然后确定其余4个数字,其排法总数为A64=360,
其中不合题意的有:中间行数字和为5,还有一行数字和为5,有4种排法,
余下两个数字有A42=12种排法,
所以此时余下的这4个数字共有360-4×12=312种方法;
由乘法原理可知共有4×312=1248种不同的排法,
故选B.
答案解析:根据题意,分2步进行,首先确定中间行的数字只能为1,4或2,3,然后确定其余4个数字的排法数,使用排除法,用总数减去不合题意的情况数,可得其情况数目,由乘法原理计算可得答案.
考试点:排列、组合的实际应用.


知识点:本题考查排列、组合的综合应用,注意特殊方法的使用,如排除法.