(2012•安徽模拟)在△ABC中,D是BC边上任意一点(D与B,C不重合),且|AB|2=|AD|2+|BD|•|DC|,则△ABC一定是( ) A.直角三角形 B.等边三角形 C.等腰三角形 D.等腰直角三角形
问题描述:
(2012•安徽模拟)在△ABC中,D是BC边上任意一点(D与B,C不重合),且|AB|2=|AD|2+|BD|•|DC|,则△ABC一定是( )
A. 直角三角形
B. 等边三角形
C. 等腰三角形
D. 等腰直角三角形
答
根据题意画出相应的图形,如图所示:
过A作AO⊥BC,交BC于点O,以BC所在的直线为x轴,AO所在的直线为y轴建立平面直角坐标系,
设A(0,a),B(b,0),C(c,0),D(d,0),
∵|AB|2=|AD|2+|BD|•|DC|,
∴a2+b2=a2+d2+(d-b)(c-d),即d2-b2+(d-b)(c-d)=0,
∴(d+b)(d-b)+(d-b)(c-d)=0,即(d-b)(b+c)=0,
∵D与B不重合,∴d≠b,即d-b≠0,
∴b+c=0,即b=-c,
∴B与C关于y轴对称,
∴AB=AC,
则△ABC为等腰三角形.
故选C