z=e^(xy)sin(x+y),则az/ax=
问题描述:
z=e^(xy)sin(x+y),则az/ax=
请一步步说清楚
az=?
ax=?
然后为什么az/ay=xe^(xy)sin(x+y)+e^(xy)cos(x+y),上下相除会变成加号
答
z=e^(xy)sin(x+y)
az/ax= sin(x+y)a/ax {e^xy) + e^xy a/ax { sin(x+y) }
= y.e^(xy) sin(x+y) + cos(x+y) e^(xy)可不可以说清楚为什么az/ax= sin(x+y)a/ax {e^xy) + e^xy a/ax { sin(x+y) }会变成加号(uv)' = udv + vdu ( product rule )