(1)求{x|x=cos(kπ/2),k∈Z}∩{x|x=sin(2kπ±π/2),k∈Z}
问题描述:
(1)求{x|x=cos(kπ/2),k∈Z}∩{x|x=sin(2kπ±π/2),k∈Z}
(2)用列举法表示{m|x2+mx+4=0,x不属于R,m∈N}
(3)求{(x,y)|(x-y)根号x=0}∩{(x,y)||y|=1}
答
(1)
{x|x=cos(kπ/2),k∈Z} = {1,0,-1}
{x|x=sin(2kπ±π/2),k∈Z} = {1,-1}
{x|x=cos(kπ/2),k∈Z}∩{x|x=sin(2kπ±π/2),k∈Z} = {1,-1}
(2)即 x^2 + mx + 4 = 0无实数解,即 m^2 - 16 {(x,y)|(x-y)根号x=0} = {直线x=y和直线x = 0}
{(x,y)||y|=1}={直线y=1和直线y=-1}
{(x,y)|(x-y)根号x=0}∩{(x,y)||y|=1}={(-1,-1),(0,-1),(0,1),(1,1)}
另:楼主高中文科么?这个应该都不难的