平面内有11个点,每两点连成一条直线,共连成48条不同直线,则这11个点可以构成的不同的三角形的个数为 网上的答案不是很详细,
平面内有11个点,每两点连成一条直线,共连成48条不同直线,则这11个点可以构成的不同的三角形的个数为 网上的答案不是很详细,
解析,首先你要分析,平面中有11个点,如果这些点中任意三点都没有共线的,那么一共应该有C(11)2=55,可是,题目中说可以连接成48条直线,那么这11个点中必定有三个点共线的.55-48=7,从7来分析,①假设有一组三个点共线,那么可以组成的直线在55的基础上应该减去C(3)2-1=2 2*3=6≠7,因此,可以断定不仅有三点共线的,也可能有四个点共线的可能.②假设有一组四个点共线,那么可以组成的直线在55的基础上应该减去C(4)2-1=5 【备注,五个点共线的可能不存在,因为,C(5)2-1=9>7,故,不可能有五条直线共线】 C(3)2-1+C(4)2-1=7,因此,综上分析,这11个点中,必定有一组三个点共线,并且还有一组四个点共线.那么,这11个点能组成的三角形的个数为,C(11)3-C(3)3-C(4)3=165-1-3=160 【备注,三个点共线不能组成三角形】
11个点如果任意3点都不共线的话应该能连成11×10÷2=55条直线,而只连成了48条直线,则说明有55-48=7个3点共线的情况,即有7个3点构不成三角形的情况;
11个点如果任意3点都不共线的话应该能构成11×10×9÷(1×2×3)=165个三角形,而上面已求得有7个3点构不成三角形的情况,所以能构成165-7=158个三角形�ɴ���161��....�Ǻǣ�����ѧϰ�ˣ����ǿ��ǵIJ�ϸѽ�����ҿ����ˣ����Ķ�û�������ҿ��������һ��C(11)3-C(3)3-C(4)3=165-1-3=160��һ��û����������Ļ��ã��Ҳų��У�C������Ǻ���C����Ϸ�ţ�C(n)m=[n����n-1������n-2������������n-m��]�£�1��2��3��������m������m��n��Ϊ��Ȼ����n��m�ţ��ðɣ����ڿ�����ô�еĺ����ˣ�лл!!