设随机变量序列X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,则对任意实数x,lim(n->∞)P{{(∑Xi-nμ)/[n^(1/2)*σ]}>x}=?
问题描述:
设随机变量序列X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,则对任意实数x,lim(n->∞)P{{(∑Xi-nμ)/[n^(1/2)*σ]}>x}=?
答
由林德贝格中心极限定理
lim(n->∞)P{{(∑Xi-nμ)/[n^(1/2)*σ]}>x}=1-Φ(x).
其中Φ(x)是标准正态分布的分布函数.