概率论 边缘概率密度的问题设(X,Y)的概率密度为f(x,y)={8xy 0≤x≤y ,0≤y≤1 { 0 其他求关于X及关于Y的边缘概率密度当0≤x≤1时,fx(x)=∫ f(x,y) dy [积分限为 X 到1 ] 当0≤y≤1时 fY(y)=∫ f(x,y) dx [积分限为 0到 y]上面写的解只是只是其中一部分...为什么 ∫ fx(x) 的积分限 定在了X到1 而不是0到X 而求Y的边缘概率密度时 ∫ fY(y) 的积分限 定在了0到y 而不是 y到1 呢 我不会确定二维边缘概率密度积分的限定,基础差..诚心提问.

问题描述:

概率论 边缘概率密度的问题
设(X,Y)的概率密度为f(x,y)={8xy 0≤x≤y ,0≤y≤1
{ 0 其他
求关于X及关于Y的边缘概率密度
当0≤x≤1时,fx(x)=∫ f(x,y) dy [积分限为 X 到1 ]
当0≤y≤1时 fY(y)=∫ f(x,y) dx [积分限为 0到 y]
上面写的解只是只是其中一部分...为什么 ∫ fx(x) 的积分限 定在了X到1 而不是0到X 而求Y的边缘概率密度时 ∫ fY(y) 的积分限 定在了0到y 而不是 y到1 呢
我不会确定二维边缘概率密度积分的限定,基础差..诚心提问.

为什么 ∫ fx(x) 的积分限 定在了X到1 而不是0到X ?求X的边缘密度,即取定的x的值,对Y进行积分,积分区间本来为负无穷到正无穷,但它的不为零的部分为图(a)所示,y的值由y=x变化到y=1这一...