已知向量p=(2,-3),q=(1,2),a=(9,4),若 a=mp+nq,则m等于多少?

问题描述:

已知向量p=(2,-3),q=(1,2),a=(9,4),若 a=mp+nq,则m等于多少?

需要画图,你按我说的做.在同一平面直角坐标系中做出这三个向量,分别为向量OP,P(2,-3),向量OQ,Q(1,2),向量OA,A(9,4).过点A作OP的平行线,延长OQ交平行线于点C,此时向量OC=nq,向量CA=mp 直线OC过(0,0),(1,2)两点,所以方程为y=2x,直线AC过(9,4),且平行于OP,斜率等于OP的斜率,即k=-1.5.所以AC方程为y-4=-1.5(x-9),联立OC,AC方程,解得C坐标为(5,10)OP=√13,CA=2√13,即m=2,OQ=√5,OC=5√5,即n=5.
答:m=2,n=5.