x^2+1)(x^4+1)(x^8+1)(x^16+1).将(x-1)/(x-1)乘这个整式.用平方差公式解 ,(x^2+1)(x^4+1)(x^8+1)(x^16+1).将(x-1)/(x-1)乘这个整式.用平方差公式解
x^2+1)(x^4+1)(x^8+1)(x^16+1).将(x-1)/(x-1)乘这个整式.用平方差公式解 ,
(x^2+1)(x^4+1)(x^8+1)(x^16+1).将(x-1)/(x-1)乘这个整式.用平方差公式解
把(x^2+1)(x^4+1)(x^8+1)(x^16+1)先乘(x²-1)得
(x²-1)(x^2+1)(x^4+1)(x^8+1)(x^16+1)
=(x^4-1)(x^4+1)(x^8+1)(x^16+1)
=(x^8-1)(x^8+1)(x^16+1)
=(x^16-1)(x^16+1)
=x^32-1
∴(x^2+1)(x^4+1)(x^8+1)(x^16+1)=(x^32-1)/(x²-1)
再乘(x-1)/(x-1)得
(x^32-1)/(x²-1)×(x-1)/(x-1)=
乘的确定是(x-1)/(x-1)?
我觉得应该有一个是x+1..
比如乘(x+1)/(x-1)的话,
上下再同乘(x-1)
得到(x^2+1)(x^4+1)(x^8+1)(x^16+1)(x+1)(x-1)/(x-1)^2
=(x^2-1)(x^2+1)(x^4+1)(x^8+1)(x^16+1)/(x-1)^2
=(x^4-1)(x^4+1)(x^8+1)(x^16+1)/(x-1)^2
=(x^8-1)(x^8+1)(x^16+1)/(x-1)^2
=(x^16-1)(x^16+1)/(x-1)^2
=(x^32-1)/(x-1)^2
(x+1)(x^2+1)(x^4+1)(x^8+1)(x^16+1) (分子乘以(x-1)分母除以(x-1)
=(x^2-1)(x^2+1)(x^4+1)(x^8+1)(x^16+1)/(x-1)
=(x^4-1)(x^4+1)(x^8+1)(x^16+1)/(x-1)
=(x^8-1)(x^8+1)(x^16+1)/(x-1)
=(x^16-1)(x^16+1)/(x-1)
=(x^32-1)/(x-1)